1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
|
#
# Author: Peter J. Acklam
# Time-stamp: 2000-11-29 23:04:53
# E-mail: pjacklam@online.no
# URL: http://home.online.no/~pjacklam
=head1 NAME
Math::SpecFun::Erf - error and scaled and unscaled complementary error
functions and their inverses
=head1 SYNOPSIS
use Math::SpecFun::Erf qw(erf erfc erfcx erfinv erfcinv erfcxinv);
Imports all the routines explicitly. Use a subset of the list for the
routines you want.
use Math::SpecFun::Erf qw(:all);
Imports all the routines, as well.
=head1 DESCRIPTION
This module implements the error function, C<erf>, and its inverse
C<erfinv>, the complementary error function, C<erfc>, and its inverse
C<erfcinv>, and the scaled complementary error function, C<erfcx>, and its
inverse C<erfcxinv>.
For references and details about the algorithms, see the comments inside
this module.
=head1 FUNCTIONS
=over 8
=item erf EXPR
=item erf
Returns the error function evaluated at EXPR. If EXPR is omitted, C<$_> is
used. The error function is
erf(x) = 2/sqrt(PI) * integral from 0 to x of exp(-t*t) dt
=item erfinv EXPR
=item erfinv
Returns the inverse of the error function evaluated at EXPR. If EXPR is
omitted, C<$_> is used.
=item erfc EXPR
=item erfc
Returns the complementary error function evaluated at EXPR. If EXPR is
omitted, C<$_> is used. The complementary error function is
erfc(x) = 2/sqrt(PI) * integral from x to infinity of exp(-t*t) dt
= 1 - erf(x)
Here is a function returning the lower tail probability of the standard
normal distribution function
use Math::SpecFun::Erf qw(erfc);
sub ltpnorm ($) {
erfc( - $_[0] / sqrt(2) )/2;
}
=item erfcinv EXPR
=item erfcinv
Returns the inverse complementary error function evaluated at EXPR. If EXPR
is omitted, C<$_> is used.
Here is a function returning the lower tail quantile of the standard normal
distribution function
use Math::SpecFun::Erf qw(erfcinv);
sub ltqnorm ($) {
-sqrt(2) * erfcinv( 2 * $_[0] );
}
=item erfcx EXPR
=item erfcx
Returns the scaled complementary error function evaluated at EXPR. If EXPR
is omitted, C<$_> is used. The scaled complementary error function is
erfcx(x) = exp(x*x) * erfc(x)
=item erfcxinv EXPR
=item erfcxinv
Returns the inverse scaled complementary error function evaluated at EXPR.
If EXPR is omitted, C<$_> is used.
=back
=head1 HISTORY
=over 4
=item Version 0.03
Added the inverse functions.
=item Version 0.02
Minor code tweaking.
=item Version 0.01
First release.
=back
=head1 AUTHOR
Perl translation by Peter J. Acklam E<lt>pjacklam@online.noE<gt>
FORTRAN code by W. J. Cody, Argonne National Laboratory, March 19, 1990.
FORTRAN code can be found at http://www.netlib.org/specfun/erf
=head1 COPYRIGHT
Copyright (c) 1999-2000 Peter J. Acklam. All rights reserved.
This program is free software; you can redistribute it and/or
modify it under the same terms as Perl itself.
=cut
package Math::SpecFun::Erf;
require 5.000;
require Exporter;
use strict;
use vars qw($VERSION @ISA @EXPORT_OK %EXPORT_TAGS);
$VERSION = '0.02';
@ISA = qw(Exporter);
@EXPORT_OK = qw(erf erfc erfcx erfinv erfcinv erfcxinv);
%EXPORT_TAGS = ( all => [ @EXPORT_OK ] );
########################################################################
## Internal functions.
########################################################################
sub calerf {
my ($arg, $result, $jint) = @_;
local $[ = 1;
#------------------------------------------------------------------
#
# This packet evaluates erf(x), erfc(x), and exp(x*x)*erfc(x)
# for a real argument x. It contains three FUNCTION type
# subprograms: ERF, ERFC, and ERFCX (or DERF, DERFC, and DERFCX),
# and one SUBROUTINE type subprogram, CALERF. The calling
# statements for the primary entries are:
#
# Y=ERF(X) (or Y=DERF(X)),
#
# Y=ERFC(X) (or Y=DERFC(X)),
# and
# Y=ERFCX(X) (or Y=DERFCX(X)).
#
# The routine CALERF is intended for internal packet use only,
# all computations within the packet being concentrated in this
# routine. The function subprograms invoke CALERF with the
# statement
#
# CALL CALERF(ARG,RESULT,JINT)
#
# where the parameter usage is as follows
#
# Function Parameters for CALERF
# call ARG Result JINT
#
# ERF(ARG) ANY REAL ARGUMENT ERF(ARG) 0
# ERFC(ARG) ABS(ARG) < XBIG ERFC(ARG) 1
# ERFCX(ARG) XNEG < ARG < XMAX ERFCX(ARG) 2
#
# The main computation evaluates near-minimax approximations
# from "Rational Chebyshev approximations for the error function"
# by W. J. Cody, Math. Comp., 1969, PP. 631-638. This
# transportable program uses rational functions that theoretically
# approximate erf(x) and erfc(x) to at least 18 significant
# decimal digits. The accuracy achieved depends on the arithmetic
# system, the compiler, the intrinsic functions, and proper
# selection of the machine-dependent constants.
#
#*******************************************************************
#*******************************************************************
#
# Explanation of machine-dependent constants
#
# XMIN = the smallest positive floating-point number.
# XINF = the largest positive finite floating-point number.
# XNEG = the largest negative argument acceptable to ERFCX;
# the negative of the solution to the equation
# 2*exp(x*x) = XINF.
# XSMALL = argument below which erf(x) may be represented by
# 2*x/sqrt(pi) and above which x*x will not underflow.
# A conservative value is the largest machine number X
# such that 1.0 + X = 1.0 to machine precision.
# XBIG = largest argument acceptable to ERFC; solution to
# the equation: W(x) * (1-0.5/x**2) = XMIN, where
# W(x) = exp(-x*x)/[x*sqrt(pi)].
# XHUGE = argument above which 1.0 - 1/(2*x*x) = 1.0 to
# machine precision. A conservative value is
# 1/[2*sqrt(XSMALL)]
# XMAX = largest acceptable argument to ERFCX; the minimum
# of XINF and 1/[sqrt(pi)*XMIN].
#
# Approximate values for some important machines are:
#
# XMIN XINF XNEG XSMALL
#
# CDC 7600 (S.P.) 3.13E-294 1.26E+322 -27.220 7.11E-15
# CRAY-1 (S.P.) 4.58E-2467 5.45E+2465 -75.345 7.11E-15
# IEEE (IBM/XT,
# SUN, etc.) (S.P.) 1.18E-38 3.40E+38 -9.382 5.96E-8
# IEEE (IBM/XT,
# SUN, etc.) (D.P.) 2.23D-308 1.79D+308 -26.628 1.11D-16
# IBM 195 (D.P.) 5.40D-79 7.23E+75 -13.190 1.39D-17
# UNIVAC 1108 (D.P.) 2.78D-309 8.98D+307 -26.615 1.73D-18
# VAX D-Format (D.P.) 2.94D-39 1.70D+38 -9.345 1.39D-17
# VAX G-Format (D.P.) 5.56D-309 8.98D+307 -26.615 1.11D-16
#
#
# XBIG XHUGE XMAX
#
# CDC 7600 (S.P.) 25.922 8.39E+6 1.80X+293
# CRAY-1 (S.P.) 75.326 8.39E+6 5.45E+2465
# IEEE (IBM/XT,
# SUN, etc.) (S.P.) 9.194 2.90E+3 4.79E+37
# IEEE (IBM/XT,
# SUN, etc.) (D.P.) 26.543 6.71D+7 2.53D+307
# IBM 195 (D.P.) 13.306 1.90D+8 7.23E+75
# UNIVAC 1108 (D.P.) 26.582 5.37D+8 8.98D+307
# VAX D-Format (D.P.) 9.269 1.90D+8 1.70D+38
# VAX G-Format (D.P.) 26.569 6.71D+7 8.98D+307
#
#*******************************************************************
#*******************************************************************
#
# Error returns
#
# The program returns ERFC = 0 for ARG >= XBIG;
#
# ERFCX = XINF for ARG < XNEG;
# and
# ERFCX = 0 for ARG >= XMAX.
#
#
# Intrinsic functions required are:
#
# ABS, AINT, EXP
#
#
# Author: W. J. Cody
# Mathematics and Computer Science Division
# Argonne National Laboratory
# Argonne, IL 60439
#
# Latest modification: March 19, 1990
#
# Translation to Perl by Peter J. Acklam, December 3, 1999
#
#------------------------------------------------------------------
my ($i);
my ($x, $del, $xden, $xnum, $y, $ysq);
#------------------------------------------------------------------
# Mathematical constants
#------------------------------------------------------------------
my ($four, $one, $half, $two, $zero) = (4, 1, 0.5, 2, 0);
my $sqrpi = 5.6418958354775628695e-1;
my $thresh = 0.46875;
my $sixten = 16;
#------------------------------------------------------------------
# Machine-dependent constants
#------------------------------------------------------------------
my ($xinf, $xneg, $xsmall) = (1.79e308, -26.628, 1.11e-16);
my ($xbig, $xhuge, $xmax) = (26.543, 6.71e7, 2.53e307);
#------------------------------------------------------------------
# Coefficients for approximation to erf in first interval
#------------------------------------------------------------------
my @a = (3.16112374387056560e00, 1.13864154151050156e02,
3.77485237685302021e02, 3.20937758913846947e03,
1.85777706184603153e-1);
my @b = (2.36012909523441209e01, 2.44024637934444173e02,
1.28261652607737228e03, 2.84423683343917062e03);
#------------------------------------------------------------------
# Coefficients for approximation to erfc in second interval
#------------------------------------------------------------------
my @c = (5.64188496988670089e-1, 8.88314979438837594e0,
6.61191906371416295e01, 2.98635138197400131e02,
8.81952221241769090e02, 1.71204761263407058e03,
2.05107837782607147e03, 1.23033935479799725e03,
2.15311535474403846e-8);
my @d = (1.57449261107098347e01, 1.17693950891312499e02,
5.37181101862009858e02, 1.62138957456669019e03,
3.29079923573345963e03, 4.36261909014324716e03,
3.43936767414372164e03, 1.23033935480374942e03);
#------------------------------------------------------------------
# Coefficients for approximation to erfc in third interval
#------------------------------------------------------------------
my @p = (3.05326634961232344e-1, 3.60344899949804439e-1,
1.25781726111229246e-1, 1.60837851487422766e-2,
6.58749161529837803e-4, 1.63153871373020978e-2);
my @q = (2.56852019228982242e00, 1.87295284992346047e00,
5.27905102951428412e-1, 6.05183413124413191e-2,
2.33520497626869185e-3);
#------------------------------------------------------------------
$x = $arg;
$y = abs($x);
if ($y <= $thresh) {
#------------------------------------------------------------------
# Evaluate erf for |X| <= 0.46875
#------------------------------------------------------------------
$ysq = $zero;
if ($y > $xsmall) { $ysq = $y * $y }
$xnum = $a[5]*$ysq;
$xden = $ysq;
for (my $i = 1 ; $i <= 3 ; ++$i) {
$xnum = ($xnum + $a[$i]) * $ysq;
$xden = ($xden + $b[$i]) * $ysq;
}
$$result = $x * ($xnum + $a[4]) / ($xden + $b[4]);
if ($jint != 0) { $$result = $one - $$result }
if ($jint == 2) { $$result = exp($ysq) * $$result }
goto x800;
#------------------------------------------------------------------
# Evaluate erfc for 0.46875 <= |X| <= 4.0
#------------------------------------------------------------------
} elsif ($y <= $four) {
$xnum = $c[9]*$y;
$xden = $y;
for (my $i = 1 ; $i <= 7 ; ++$i) {
$xnum = ($xnum + $c[$i]) * $y;
$xden = ($xden + $d[$i]) * $y;
}
$$result = ($xnum + $c[8]) / ($xden + $d[8]);
if ($jint != 2) {
$ysq = int($y*$sixten)/$sixten;
$del = ($y-$ysq)*($y+$ysq);
$$result = exp(-$ysq*$ysq) * exp(-$del) * $$result;
}
#------------------------------------------------------------------
# Evaluate erfc for |X| > 4.0
#------------------------------------------------------------------
} else {
$$result = $zero;
if ($y >= $xbig) {
if (($jint != 2) || ($y >= $xmax)) { goto x300 }
if ($y >= $xhuge) {
$$result = $sqrpi / $y;
goto x300;
}
}
$ysq = $one / ($y * $y);
$xnum = $p[6]*$ysq;
$xden = $ysq;
for (my $i = 1 ; $i <= 4 ; ++$i) {
$xnum = ($xnum + $p[$i]) * $ysq;
$xden = ($xden + $q[$i]) * $ysq;
}
$$result = $ysq *($xnum + $p[5]) / ($xden + $q[5]);
$$result = ($sqrpi - $$result) / $y;
if ($jint != 2) {
$ysq = int($y*$sixten)/$sixten;
$del = ($y-$ysq)*($y+$ysq);
$$result = exp(-$ysq*$ysq) * exp(-$del) * $$result;
}
}
#------------------------------------------------------------------
# Fix up for negative argument, erf, etc.
#------------------------------------------------------------------
x300:
if ($jint == 0) {
$$result = ($half - $$result) + $half;
if ($x < $zero) { $$result = -$$result }
} elsif ($jint == 1) {
if ($x < $zero) { $$result = $two - $$result }
} else {
if ($x < $zero) {
if ($x < $xneg) {
$$result = $xinf;
} else {
$ysq = int($x*$sixten)/$sixten;
$del = ($x-$ysq)*($x+$ysq);
$y = exp($ysq*$ysq) * exp($del);
$$result = ($y+$y) - $$result;
}
}
}
x800:
return 1;
#---------- Last card of CALERF ----------
}
sub erf {
my $x = @_ ? $_[0] : $_;
#--------------------------------------------------------------------
#
# This subprogram computes approximate values for erf(x).
# (see comments heading CALERF).
#
# Author/date: W. J. Cody, January 8, 1985
#
# Translation to Perl by Peter J. Acklam, December 3, 1999
#
#--------------------------------------------------------------------
my $result;
my $jint = 0;
calerf($x, \$result, $jint);
my $erf = $result;
return $erf;
#---------- Last card of ERF ----------
}
########################################################################
## User functions.
########################################################################
sub erfc {
my $x = @_ ? $_[0] : $_;
#--------------------------------------------------------------------
#
# This subprogram computes approximate values for erfc(x).
# (see comments heading CALERF).
#
# Author/date: W. J. Cody, January 8, 1985
#
# Translation to Perl by Peter J. Acklam, December 3, 1999
#
#--------------------------------------------------------------------
my ($result);
my $jint = 1;
calerf($x, \$result, $jint);
my $erfc = $result;
return $erfc;
#---------- Last card of ERFC ----------
}
sub erfcx {
my $x = @_ ? $_[0] : $_;
#------------------------------------------------------------------
#
# This subprogram computes approximate values for exp(x*x) * erfc(x).
# (see comments heading CALERF).
#
# Author/date: W. J. Cody, March 30, 1987
#
# Translation to Perl by Peter J. Acklam, December 3, 1999
#
#------------------------------------------------------------------
my ($result);
my $jint = 2;
calerf($x, \$result, $jint);
my $erfcx = $result;
return $erfcx;
#---------- Last card of ERFCX ----------
}
sub erfinv {
my $y = @_ ? $_[0] : $_;
return 0 if $y == 0;
return erfcinv(1-$y) if $y > 0.5;
return -erfcinv(1+$y) if $y < -0.5;
#
# Halley's rational 3rd order method:
# u <- f(x)/f'(x)
# v <- f''(x)/f'(x)
# x <- x - u/(1-u*v/2)
#
# Here:
# f(x) = erf(x) - y
# f'(x) = 2/sqrt(pi)*exp(-x*x)
# f''(x) = -4/sqrt(pi)*x*exp(-x*x)
#
my $x = 0;
my $dx;
my $c = .88622692545275801364908374167055; # sqrt(pi)/2
my $eps = 5e-15;
do {
my $f = erf($x) - $y;
my $u = $c*$f*exp($x*$x);
$dx = -$u/(1+$u*$x);
$x += $dx;
} until abs($dx/$x) <= $eps;
return $x;
}
sub erfcinv {
my $y = @_ ? $_[0] : $_;
return 0 if $y == 1;
my $flag = $y > 1;
$y = 2 - $y if $flag;
#
# Halley's rational 3rd order method:
# u <- f(x)/f'(x)
# v <- f''(x)/f'(x)
# x <- x - u/(1-u*v/2)
#
# Here:
# f(x) = erfc(x) - y
# f'(x) = -2/sqrt(pi)*exp(-x*x)
# f''(x) = 4/sqrt(pi)*x*exp(-x*x)
#
my $x = 0;
my $dx;
my $c = -.88622692545275801364908374167055; # sqrt(pi)/2
my $eps = 5e-15;
do {
my $u = $c*(erfcx($x) - $y*exp($x*$x));
$dx = -$u/(1+$u*$x);
$x += $dx;
} until abs($dx/$x) <= $eps;
return $flag ? -$x : $x;
}
sub erfcxinv {
my $y = @_ ? $_[0] : $_;
return 0 if $y == 1;
#
# Halley's 3rd order method:
# u <- f(x)/f'(x)
# v <- f''(x)/f'(x)
# x <- x - u/(1-u*v/2)
#
# Here:
# f(x) = erfcx(x) - y
# f'(x) = 2*(x*erfcx(x)-1/sqrt(pi));
# f''(x) = (2+4*x*x)*erfcx(x) - 4*x/sqrt(pi);
#
my $x = 0;
my $dx;
my $c = .56418958354775628694807945156079; # 1/sqrt(pi)
my $d = 2.2567583341910251477923178062432; # 4/sqrt(pi)
my $eps = 5e-15;
do {
my $f = erfcx($x) - $y;
my $df = 2*($x*erfcx($x)-$c);
my $ddf = (2+4*$x*$x)*erfcx($x) - $x*$d;
my $u = $f/$df;
my $v = $ddf/$df;
$dx = -$u/(1-$u*$v/2);
$x += $dx;
} until abs($dx/$x) <= $eps;
return $x;
}
|