From a06d5cf64d4cec96dbaf377964cbf547f09f1c14 Mon Sep 17 00:00:00 2001 From: Peter Palfrader Date: Thu, 13 Jun 2002 15:32:48 +0000 Subject: Initial Import. Packages by 1999-2000 Peter J. Acklam; This program is free software; you can redistribute it and/ormodify it under the same terms as Perl itself --- lib/Math/SpecFun/Erf.pm | 565 +++++++++++++++++++++++++++++++++++++++ lib/Statistics/Distrib/Normal.pm | 438 ++++++++++++++++++++++++++++++ 2 files changed, 1003 insertions(+) create mode 100644 lib/Math/SpecFun/Erf.pm create mode 100644 lib/Statistics/Distrib/Normal.pm (limited to 'lib') diff --git a/lib/Math/SpecFun/Erf.pm b/lib/Math/SpecFun/Erf.pm new file mode 100644 index 0000000..c913792 --- /dev/null +++ b/lib/Math/SpecFun/Erf.pm @@ -0,0 +1,565 @@ +# +# Author: Peter J. Acklam +# Time-stamp: 2000-11-29 23:04:53 +# E-mail: pjacklam@online.no +# URL: http://home.online.no/~pjacklam + +=head1 NAME + +Math::SpecFun::Erf - error and scaled and unscaled complementary error +functions and their inverses + +=head1 SYNOPSIS + + use Math::SpecFun::Erf qw(erf erfc erfcx erfinv erfcinv erfcxinv); + +Imports all the routines explicitly. Use a subset of the list for the +routines you want. + + use Math::SpecFun::Erf qw(:all); + +Imports all the routines, as well. + +=head1 DESCRIPTION + +This module implements the error function, C, and its inverse +C, the complementary error function, C, and its inverse +C, and the scaled complementary error function, C, and its +inverse C. + +For references and details about the algorithms, see the comments inside +this module. + +=head1 FUNCTIONS + +=over 8 + +=item erf EXPR + +=item erf + +Returns the error function evaluated at EXPR. If EXPR is omitted, C<$_> is +used. The error function is + + erf(x) = 2/sqrt(PI) * integral from 0 to x of exp(-t*t) dt + +=item erfinv EXPR + +=item erfinv + +Returns the inverse of the error function evaluated at EXPR. If EXPR is +omitted, C<$_> is used. + +=item erfc EXPR + +=item erfc + +Returns the complementary error function evaluated at EXPR. If EXPR is +omitted, C<$_> is used. The complementary error function is + + erfc(x) = 2/sqrt(PI) * integral from x to infinity of exp(-t*t) dt + = 1 - erf(x) + +Here is a function returning the lower tail probability of the standard +normal distribution function + + use Math::SpecFun::Erf qw(erfc); + + sub ltpnorm ($) { + erfc( - $_[0] / sqrt(2) )/2; + } + +=item erfcinv EXPR + +=item erfcinv + +Returns the inverse complementary error function evaluated at EXPR. If EXPR +is omitted, C<$_> is used. + +Here is a function returning the lower tail quantile of the standard normal +distribution function + + use Math::SpecFun::Erf qw(erfcinv); + + sub ltqnorm ($) { + -sqrt(2) * erfcinv( 2 * $_[0] ); + } + +=item erfcx EXPR + +=item erfcx + +Returns the scaled complementary error function evaluated at EXPR. If EXPR +is omitted, C<$_> is used. The scaled complementary error function is + + erfcx(x) = exp(x*x) * erfc(x) + +=item erfcxinv EXPR + +=item erfcxinv + +Returns the inverse scaled complementary error function evaluated at EXPR. +If EXPR is omitted, C<$_> is used. + +=back + +=head1 HISTORY + +=over 4 + +=item Version 0.03 + +Added the inverse functions. + +=item Version 0.02 + +Minor code tweaking. + +=item Version 0.01 + +First release. + +=back + +=head1 AUTHOR + +Perl translation by Peter J. Acklam Epjacklam@online.noE + +FORTRAN code by W. J. Cody, Argonne National Laboratory, March 19, 1990. +FORTRAN code can be found at http://www.netlib.org/specfun/erf + +=head1 COPYRIGHT + +Copyright (c) 1999-2000 Peter J. Acklam. All rights reserved. +This program is free software; you can redistribute it and/or +modify it under the same terms as Perl itself. + +=cut + +package Math::SpecFun::Erf; +require 5.000; +require Exporter; + +use strict; +use vars qw($VERSION @ISA @EXPORT_OK %EXPORT_TAGS); + +$VERSION = '0.02'; +@ISA = qw(Exporter); +@EXPORT_OK = qw(erf erfc erfcx erfinv erfcinv erfcxinv); +%EXPORT_TAGS = ( all => [ @EXPORT_OK ] ); + +######################################################################## +## Internal functions. +######################################################################## + +sub calerf { + my ($arg, $result, $jint) = @_; + local $[ = 1; +#------------------------------------------------------------------ +# +# This packet evaluates erf(x), erfc(x), and exp(x*x)*erfc(x) +# for a real argument x. It contains three FUNCTION type +# subprograms: ERF, ERFC, and ERFCX (or DERF, DERFC, and DERFCX), +# and one SUBROUTINE type subprogram, CALERF. The calling +# statements for the primary entries are: +# +# Y=ERF(X) (or Y=DERF(X)), +# +# Y=ERFC(X) (or Y=DERFC(X)), +# and +# Y=ERFCX(X) (or Y=DERFCX(X)). +# +# The routine CALERF is intended for internal packet use only, +# all computations within the packet being concentrated in this +# routine. The function subprograms invoke CALERF with the +# statement +# +# CALL CALERF(ARG,RESULT,JINT) +# +# where the parameter usage is as follows +# +# Function Parameters for CALERF +# call ARG Result JINT +# +# ERF(ARG) ANY REAL ARGUMENT ERF(ARG) 0 +# ERFC(ARG) ABS(ARG) < XBIG ERFC(ARG) 1 +# ERFCX(ARG) XNEG < ARG < XMAX ERFCX(ARG) 2 +# +# The main computation evaluates near-minimax approximations +# from "Rational Chebyshev approximations for the error function" +# by W. J. Cody, Math. Comp., 1969, PP. 631-638. This +# transportable program uses rational functions that theoretically +# approximate erf(x) and erfc(x) to at least 18 significant +# decimal digits. The accuracy achieved depends on the arithmetic +# system, the compiler, the intrinsic functions, and proper +# selection of the machine-dependent constants. +# +#******************************************************************* +#******************************************************************* +# +# Explanation of machine-dependent constants +# +# XMIN = the smallest positive floating-point number. +# XINF = the largest positive finite floating-point number. +# XNEG = the largest negative argument acceptable to ERFCX; +# the negative of the solution to the equation +# 2*exp(x*x) = XINF. +# XSMALL = argument below which erf(x) may be represented by +# 2*x/sqrt(pi) and above which x*x will not underflow. +# A conservative value is the largest machine number X +# such that 1.0 + X = 1.0 to machine precision. +# XBIG = largest argument acceptable to ERFC; solution to +# the equation: W(x) * (1-0.5/x**2) = XMIN, where +# W(x) = exp(-x*x)/[x*sqrt(pi)]. +# XHUGE = argument above which 1.0 - 1/(2*x*x) = 1.0 to +# machine precision. A conservative value is +# 1/[2*sqrt(XSMALL)] +# XMAX = largest acceptable argument to ERFCX; the minimum +# of XINF and 1/[sqrt(pi)*XMIN]. +# +# Approximate values for some important machines are: +# +# XMIN XINF XNEG XSMALL +# +# CDC 7600 (S.P.) 3.13E-294 1.26E+322 -27.220 7.11E-15 +# CRAY-1 (S.P.) 4.58E-2467 5.45E+2465 -75.345 7.11E-15 +# IEEE (IBM/XT, +# SUN, etc.) (S.P.) 1.18E-38 3.40E+38 -9.382 5.96E-8 +# IEEE (IBM/XT, +# SUN, etc.) (D.P.) 2.23D-308 1.79D+308 -26.628 1.11D-16 +# IBM 195 (D.P.) 5.40D-79 7.23E+75 -13.190 1.39D-17 +# UNIVAC 1108 (D.P.) 2.78D-309 8.98D+307 -26.615 1.73D-18 +# VAX D-Format (D.P.) 2.94D-39 1.70D+38 -9.345 1.39D-17 +# VAX G-Format (D.P.) 5.56D-309 8.98D+307 -26.615 1.11D-16 +# +# +# XBIG XHUGE XMAX +# +# CDC 7600 (S.P.) 25.922 8.39E+6 1.80X+293 +# CRAY-1 (S.P.) 75.326 8.39E+6 5.45E+2465 +# IEEE (IBM/XT, +# SUN, etc.) (S.P.) 9.194 2.90E+3 4.79E+37 +# IEEE (IBM/XT, +# SUN, etc.) (D.P.) 26.543 6.71D+7 2.53D+307 +# IBM 195 (D.P.) 13.306 1.90D+8 7.23E+75 +# UNIVAC 1108 (D.P.) 26.582 5.37D+8 8.98D+307 +# VAX D-Format (D.P.) 9.269 1.90D+8 1.70D+38 +# VAX G-Format (D.P.) 26.569 6.71D+7 8.98D+307 +# +#******************************************************************* +#******************************************************************* +# +# Error returns +# +# The program returns ERFC = 0 for ARG >= XBIG; +# +# ERFCX = XINF for ARG < XNEG; +# and +# ERFCX = 0 for ARG >= XMAX. +# +# +# Intrinsic functions required are: +# +# ABS, AINT, EXP +# +# +# Author: W. J. Cody +# Mathematics and Computer Science Division +# Argonne National Laboratory +# Argonne, IL 60439 +# +# Latest modification: March 19, 1990 +# +# Translation to Perl by Peter J. Acklam, December 3, 1999 +# +#------------------------------------------------------------------ + my ($i); + my ($x, $del, $xden, $xnum, $y, $ysq); +#------------------------------------------------------------------ +# Mathematical constants +#------------------------------------------------------------------ + my ($four, $one, $half, $two, $zero) = (4, 1, 0.5, 2, 0); + my $sqrpi = 5.6418958354775628695e-1; + my $thresh = 0.46875; + my $sixten = 16; +#------------------------------------------------------------------ +# Machine-dependent constants +#------------------------------------------------------------------ + my ($xinf, $xneg, $xsmall) = (1.79e308, -26.628, 1.11e-16); + my ($xbig, $xhuge, $xmax) = (26.543, 6.71e7, 2.53e307); +#------------------------------------------------------------------ +# Coefficients for approximation to erf in first interval +#------------------------------------------------------------------ + my @a = (3.16112374387056560e00, 1.13864154151050156e02, + 3.77485237685302021e02, 3.20937758913846947e03, + 1.85777706184603153e-1); + my @b = (2.36012909523441209e01, 2.44024637934444173e02, + 1.28261652607737228e03, 2.84423683343917062e03); +#------------------------------------------------------------------ +# Coefficients for approximation to erfc in second interval +#------------------------------------------------------------------ + my @c = (5.64188496988670089e-1, 8.88314979438837594e0, + 6.61191906371416295e01, 2.98635138197400131e02, + 8.81952221241769090e02, 1.71204761263407058e03, + 2.05107837782607147e03, 1.23033935479799725e03, + 2.15311535474403846e-8); + my @d = (1.57449261107098347e01, 1.17693950891312499e02, + 5.37181101862009858e02, 1.62138957456669019e03, + 3.29079923573345963e03, 4.36261909014324716e03, + 3.43936767414372164e03, 1.23033935480374942e03); +#------------------------------------------------------------------ +# Coefficients for approximation to erfc in third interval +#------------------------------------------------------------------ + my @p = (3.05326634961232344e-1, 3.60344899949804439e-1, + 1.25781726111229246e-1, 1.60837851487422766e-2, + 6.58749161529837803e-4, 1.63153871373020978e-2); + my @q = (2.56852019228982242e00, 1.87295284992346047e00, + 5.27905102951428412e-1, 6.05183413124413191e-2, + 2.33520497626869185e-3); +#------------------------------------------------------------------ + $x = $arg; + $y = abs($x); + if ($y <= $thresh) { +#------------------------------------------------------------------ +# Evaluate erf for |X| <= 0.46875 +#------------------------------------------------------------------ + $ysq = $zero; + if ($y > $xsmall) { $ysq = $y * $y } + $xnum = $a[5]*$ysq; + $xden = $ysq; + for (my $i = 1 ; $i <= 3 ; ++$i) { + $xnum = ($xnum + $a[$i]) * $ysq; + $xden = ($xden + $b[$i]) * $ysq; + } + $$result = $x * ($xnum + $a[4]) / ($xden + $b[4]); + if ($jint != 0) { $$result = $one - $$result } + if ($jint == 2) { $$result = exp($ysq) * $$result } + goto x800; +#------------------------------------------------------------------ +# Evaluate erfc for 0.46875 <= |X| <= 4.0 +#------------------------------------------------------------------ + } elsif ($y <= $four) { + $xnum = $c[9]*$y; + $xden = $y; + for (my $i = 1 ; $i <= 7 ; ++$i) { + $xnum = ($xnum + $c[$i]) * $y; + $xden = ($xden + $d[$i]) * $y; + } + $$result = ($xnum + $c[8]) / ($xden + $d[8]); + if ($jint != 2) { + $ysq = int($y*$sixten)/$sixten; + $del = ($y-$ysq)*($y+$ysq); + $$result = exp(-$ysq*$ysq) * exp(-$del) * $$result; + } +#------------------------------------------------------------------ +# Evaluate erfc for |X| > 4.0 +#------------------------------------------------------------------ + } else { + $$result = $zero; + if ($y >= $xbig) { + if (($jint != 2) || ($y >= $xmax)) { goto x300 } + if ($y >= $xhuge) { + $$result = $sqrpi / $y; + goto x300; + } + } + $ysq = $one / ($y * $y); + $xnum = $p[6]*$ysq; + $xden = $ysq; + for (my $i = 1 ; $i <= 4 ; ++$i) { + $xnum = ($xnum + $p[$i]) * $ysq; + $xden = ($xden + $q[$i]) * $ysq; + } + $$result = $ysq *($xnum + $p[5]) / ($xden + $q[5]); + $$result = ($sqrpi - $$result) / $y; + if ($jint != 2) { + $ysq = int($y*$sixten)/$sixten; + $del = ($y-$ysq)*($y+$ysq); + $$result = exp(-$ysq*$ysq) * exp(-$del) * $$result; + } + } +#------------------------------------------------------------------ +# Fix up for negative argument, erf, etc. +#------------------------------------------------------------------ + x300: + if ($jint == 0) { + $$result = ($half - $$result) + $half; + if ($x < $zero) { $$result = -$$result } + } elsif ($jint == 1) { + if ($x < $zero) { $$result = $two - $$result } + } else { + if ($x < $zero) { + if ($x < $xneg) { + $$result = $xinf; + } else { + $ysq = int($x*$sixten)/$sixten; + $del = ($x-$ysq)*($x+$ysq); + $y = exp($ysq*$ysq) * exp($del); + $$result = ($y+$y) - $$result; + } + } + } + x800: + return 1; +#---------- Last card of CALERF ---------- +} + +sub erf { + my $x = @_ ? $_[0] : $_; +#-------------------------------------------------------------------- +# +# This subprogram computes approximate values for erf(x). +# (see comments heading CALERF). +# +# Author/date: W. J. Cody, January 8, 1985 +# +# Translation to Perl by Peter J. Acklam, December 3, 1999 +# +#-------------------------------------------------------------------- + my $result; + my $jint = 0; + calerf($x, \$result, $jint); + my $erf = $result; + return $erf; +#---------- Last card of ERF ---------- +} + +######################################################################## +## User functions. +######################################################################## + +sub erfc { + my $x = @_ ? $_[0] : $_; +#-------------------------------------------------------------------- +# +# This subprogram computes approximate values for erfc(x). +# (see comments heading CALERF). +# +# Author/date: W. J. Cody, January 8, 1985 +# +# Translation to Perl by Peter J. Acklam, December 3, 1999 +# +#-------------------------------------------------------------------- + my ($result); + my $jint = 1; + calerf($x, \$result, $jint); + my $erfc = $result; + return $erfc; +#---------- Last card of ERFC ---------- +} + +sub erfcx { + my $x = @_ ? $_[0] : $_; +#------------------------------------------------------------------ +# +# This subprogram computes approximate values for exp(x*x) * erfc(x). +# (see comments heading CALERF). +# +# Author/date: W. J. Cody, March 30, 1987 +# +# Translation to Perl by Peter J. Acklam, December 3, 1999 +# +#------------------------------------------------------------------ + my ($result); + my $jint = 2; + calerf($x, \$result, $jint); + my $erfcx = $result; + return $erfcx; +#---------- Last card of ERFCX ---------- +} + +sub erfinv { + my $y = @_ ? $_[0] : $_; + + return 0 if $y == 0; + return erfcinv(1-$y) if $y > 0.5; + return -erfcinv(1+$y) if $y < -0.5; + + # + # Halley's rational 3rd order method: + # u <- f(x)/f'(x) + # v <- f''(x)/f'(x) + # x <- x - u/(1-u*v/2) + # + # Here: + # f(x) = erf(x) - y + # f'(x) = 2/sqrt(pi)*exp(-x*x) + # f''(x) = -4/sqrt(pi)*x*exp(-x*x) + # + my $x = 0; + my $dx; + my $c = .88622692545275801364908374167055; # sqrt(pi)/2 + my $eps = 5e-15; + do { + my $f = erf($x) - $y; + my $u = $c*$f*exp($x*$x); + $dx = -$u/(1+$u*$x); + $x += $dx; + } until abs($dx/$x) <= $eps; + return $x; +} + +sub erfcinv { + my $y = @_ ? $_[0] : $_; + + return 0 if $y == 1; + + my $flag = $y > 1; + $y = 2 - $y if $flag; + + # + # Halley's rational 3rd order method: + # u <- f(x)/f'(x) + # v <- f''(x)/f'(x) + # x <- x - u/(1-u*v/2) + # + # Here: + # f(x) = erfc(x) - y + # f'(x) = -2/sqrt(pi)*exp(-x*x) + # f''(x) = 4/sqrt(pi)*x*exp(-x*x) + # + my $x = 0; + my $dx; + my $c = -.88622692545275801364908374167055; # sqrt(pi)/2 + my $eps = 5e-15; + do { + my $u = $c*(erfcx($x) - $y*exp($x*$x)); + $dx = -$u/(1+$u*$x); + $x += $dx; + } until abs($dx/$x) <= $eps; + + return $flag ? -$x : $x; +} + +sub erfcxinv { + my $y = @_ ? $_[0] : $_; + + return 0 if $y == 1; + + # + # Halley's 3rd order method: + # u <- f(x)/f'(x) + # v <- f''(x)/f'(x) + # x <- x - u/(1-u*v/2) + # + # Here: + # f(x) = erfcx(x) - y + # f'(x) = 2*(x*erfcx(x)-1/sqrt(pi)); + # f''(x) = (2+4*x*x)*erfcx(x) - 4*x/sqrt(pi); + # + my $x = 0; + my $dx; + my $c = .56418958354775628694807945156079; # 1/sqrt(pi) + my $d = 2.2567583341910251477923178062432; # 4/sqrt(pi) + my $eps = 5e-15; + do { + my $f = erfcx($x) - $y; + my $df = 2*($x*erfcx($x)-$c); + my $ddf = (2+4*$x*$x)*erfcx($x) - $x*$d; + my $u = $f/$df; + my $v = $ddf/$df; + $dx = -$u/(1-$u*$v/2); + $x += $dx; + } until abs($dx/$x) <= $eps; + return $x; +} diff --git a/lib/Statistics/Distrib/Normal.pm b/lib/Statistics/Distrib/Normal.pm new file mode 100644 index 0000000..58cf737 --- /dev/null +++ b/lib/Statistics/Distrib/Normal.pm @@ -0,0 +1,438 @@ +# +# Author: Peter J. Acklam +# Time-stamp: 2000-06-02 23:42:57 +# E-mail: pjacklam@online.no +# URL: http://home.online.no/~pjacklam + +=head1 NAME + +Statistics::Distrib::Normal - the normal distribution + +=head1 SYNOPSIS + + use Statistics::Distrib::Normal; + + $dist = new Statistics::Distrib::Normal; + + $dist->mu(3); # set the location parameter + $dist->sigma(5); # set the scale parameter + @x = $dist->rand(10); # generate random numbers + + # or + + @x = Statistics::Distrib::Normal->new(Mu => 3, Sigma => 5)->rand(10); + +=head1 DESCRIPTION + +This module contains miscellaneous functions related to the normal +distribution. + +=cut + +package Statistics::Distrib::Normal; +require 5.000; + +use strict; +use vars qw($VERSION); +use Carp; + +$VERSION = '0.01'; + +use constant PI => 4 * atan2 1, 1; +use constant TWOPI => 2 * PI; + +# the smallest positive floating-point number such that 1+EPS > 1 +use constant EPS => 2.220446049250313080847263336181640625e-016; + +## +## Constructor +## + +=head1 CONSTRUCTOR + +=over 4 + +=item new ( [ OPTIONS ] ) + +C is a list of options given in the form of key-value +pairs, just like a hash table. Valid options are + +=over 8 + +=item B + +Sets the mu parameter (the mean) of the distribution to the specified +value. + +=item B + +Sets the sigma parameter (the standard deviation) of the distribution +to the specified value. + +=back + +=back + +=cut + +sub new { + my $self = shift; + my $class = ref($self) || $self; + my %arg = @_; + + my %hash = ( mu => 0, + sigma => 1, + ); + + my $me = bless \%hash, $class; + + foreach my $key ( keys %arg ) { + $me->mu($arg{Mu}), next if $key eq 'Mu'; + $me->sigma($arg{Sigma}), next if $key eq 'Sigma'; + carp "Unknown option $arg{$key} ignored"; + } + + return $me; +} + +## +## Methods +## + +=pod + +=head1 METHODS + +=over 4 + +=item mean ( [ MEAN ] ) + +Set the mu parameter (the mean) of the distribution to C. If +C is omitted, the current value of mu is returned. + +=cut + +sub mu { + my $me = shift; + croak 'Too many arguments' if @_ > 1; + if ( @_ ) { + $me->{mu} = shift; + return 1; + } + return $me->{mu}; +} + +=pod + +=item sigma ( [ SDEV ] ) + +Set the sigma parameter (the standard deviation) of the distribution +to C. If C is omitted, the current value of sigma is +returned. + +=cut + +sub sigma { + my $me = shift; + croak 'Too many arguments' if @_ > 1; + if ( @_ ) { + my $sigma = shift; + croak 'Standard deviation most be positive' unless $sigma > 0; + $me->{sigma} = $sigma; + return 1; + } + return $me->{sigma}; +} + +=pod + +=item pdf ( X1 [, X2 [, X3 ... ] ] ) + +Evaluate the probability density function at C, C, C, ... + +=cut + +sub pdf { + my $me = shift; + croak 'Not enough arguments' unless @_; + my $mu = $me->{mu}; + my $sigma = $me->{sigma}; + my $const = log(TWOPI * $sigma * $sigma); + my @f; + foreach my $x ( @_ ) { + my $z = ( $x - $mu ) / $sigma; + push @f, exp( -0.5 * ( $const + $z*$z ) ); + } + return @f; +} + +=pod + +=item ltp ( X1 [, X2 [, ... ] ] ) + +Evaluate the lower tail probability function at C, C, C, +... + +=cut + +sub ltp { + my $me = shift; + croak 'Not enough arguments' unless @_; + my $mu = $me->{mu}; + my $sigma = $me->{sigma}; + + require Math::SpecFun::Erf; + import Math::SpecFun::Erf qw(erfc); + + my @p; + foreach my $x ( @_ ) { + my $z = ( $x - $mu ) / $sigma; + push @p, erfc( - $_[0] / sqrt(2) )/2; + } + return @p; +} + +=pod + +=item utp ( X1 [, X2 [, ... ] ] ) + +Evaluate the upper tail probability function at C, C, C, +... + +=cut + +sub utp { + my $me = shift; + croak 'Not enough arguments' unless @_; + my $mu = $me->{mu}; + my $sigma = $me->{sigma}; + + require Math::SpecFun::Erf; + import Math::SpecFun::Erf qw(erfc); + + my @p; + foreach my $x ( @_ ) { + my $z = ( $x - $mu ) / $sigma; + push @p, erfc( $_[0] / sqrt(2) )/2; + } + return @p; +} + +=pod + +=item ltq ( P1 [, P2 [, ... ] ] ) + +Returns the lower tail quantile for the probabilities C, C, +C, ... + +=cut + +sub ltq { + croak 'Method not implemented yet'; +} + +=pod + +=item utq ( P1 [, P2 [, P3 ... ] ] ) + +Returns the upper tail quantile for the probabilities C, C, +C, ... + +=cut + +sub utq { + croak 'Method not implemented yet'; +} + +=pod + +=item intprob( XLOW, XHIGH ) + +Interval probability. Returns the probability of an outcome in the +interval from XLOW to XHIGH. + +=cut + +sub intprob { + my $me = shift; + croak 'Bad number of arguments' unless @_ == 2; + my ($xlow, $xhigh) = @_; + return 0 unless $xlow < $xhigh; + my $mu = $me->{mu}; + my $sigma = $me->{sigma}; + + if ( $mu < $xlow ) { + return $me->utp($xlow) - $me->utp($xhigh); + } else { + return $me->ltp($xhigh) - $me->ltp($xlow); + } +} + +=pod + +=item rand( [ NUM ] ) + +Generate random variables. If C is omitted, a single variable is +returned. + +=cut + +sub rand { + my $me = shift; + my $num; + if ( @_ ) { + $num = shift; + croak 'Too many arguments' if @_; + croak 'Argument must be positive integer' + unless ($num == int $num) && ($num > 0); + } else { + $num = 1; + } + + # Generate the random variables by the Box-Muller method. + my @z; + my $mu = $me->{mu}; + my $sigma = $me->{sigma}; + my $const = -2 * $sigma * $sigma; + my $i; + for ( $i = 0 ; $i < $num ; $i += 2 ) { + my $r = sqrt $const * log rand; + my $t = TWOPI * rand; + push @z, $mu + $r * sin $t, $mu + $r * cos $t; + } + pop @z if $i > $num; + return @z; +} + +=pod + +=item expectation () + +Return the expectation of the distribution. + +=cut + +sub expectation { + my $me = shift; + croak 'Too many arguments' if @_; + return $me->{mu}; +} + +=pod + +=item variance () + +Return the variance of the distribution. + +=cut + +sub variance { + my $me = shift; + croak 'Too many arguments' if @_; + return $me->{sigma}**2; +} + +=pod + +=item skewness () + +Return the skewness of the distribution. + +=cut + +sub skewness { + my $me = shift; + croak 'Too many arguments' if @_; + return 0; +} + +=pod + +=item kurtosis () + +Return the kurtosis (normalized) of the distribution. + +=cut + +sub kurtosis { + my $me = shift; + croak 'Too many arguments' if @_; + return 0; +} + +=item dmo + +Direct moments for the distribution. + +Not implemented yet. + +=cut + +sub dmo { + croak 'Method not implemented yet'; +} + +=pod + +=item cmo + +Central moments for the distribution. + +=cut + +sub cmo { + croak 'Method not implemented yet'; +} + +=pod + +=item mode () + +Returns the mode of the distribution. + +=cut + +sub mode { + my $me = shift; + croak 'Too many input arguments' if @_; + return $me->{mu}; +} + +=back + +=head1 BUGS + +None known. + +=head1 LIMITATIONS + +Degenerate cases are not allowed for most methods; e.g., a +distribution with zero variance. + +=head1 HISTORY + +=over 4 + +=item Version 0.02 + +Code formatting changes. + +=item Version 0.01 + +First release. + +=back + +=head1 AUTHOR + +Peter J. Acklam Epjacklam@online.noE. + +=head1 COPYRIGHT/LICENSE + +Copyright (c) 1999-2000 Peter J. Acklam. All rights reserved. +This program is free software; you can redistribute it and/or +modify it under the same terms as Perl itself. + +=cut + +1; # Modules must return true. -- cgit v1.2.3